Cách tính góc giữa đường thẳng và mặt phẳng cực hay – Toán lớp 11

Chào mừng bạn đến với blog chia sẽ gtvttw4.edu.vn trong bài viết về Cách tính góc giữa đường thẳng và mặt phẳng chúng tôi sẽ chia sẻ kinh nghiệm chuyên sâu của mình cung cấp kiến thức chuyên sâu dành cho bạn.

Video Cách tính góc giữa đường thẳng và mặt phẳng

Cách tính góc giữa đường thẳng và mặt phẳng cực hay

A. Phương pháp giải

Để xác định góc giữa đường thẳng a và mặt phẳng (α) ta thực hiện theo các bước sau:

+ Bước 1: Tìm giao điểm O của đường thẳng a và (α)

+ Bước 2: Dựng hình chiếu A’ của một điểm A ∈ a xuống (α)

+ Bước 3: Góc ∠AOA’ = φ chính là góc giữa đường thẳng a và (α)

Lưu ý:

– Để dựng hình chiếu A’ của điểm A trên (α) ta chọn một đường thẳng b ⊥ (α) khi đó AA’ // b.

– Để tính góc φ ta sử dụng hệ thức lượng trong tam giác vuông OAA’.

B. Ví dụ minh họa

Ví dụ 1: Cho tứ diện ABCD có cạnh AB, BC, BD bằng nhau và vuông góc với nhau từng đôi một. Khẳng định nào sau đây đúng?

A. Góc giữa AC và (BCD) là góc ACB

B. Góc giữa AD và (ABC) là góc ADB

C. Góc giữa AC và (ABD) là góc ACB

D. Góc giữa CD và (ABD) là góc CBD

Xem thêm:: Bảng Cửu Chương 9 || Bài Tập & Hướng Dẫn Cách Học – Mighty Math

Hướng dẫn giải

Chọn A.

Ví dụ 2: Cho tam giác ABC vuông cân tại A và BC = a. Trên đường thẳng qua A vuông góc với (ABC) lấy điểm S sao cho SA = (√6)a/2 . Tính số đo góc giữa đường thẳng SA và (ABC) .

A. 30° B. 45° C. 60° D. 90°

Xem thêm:: Bảng Cửu Chương 9 || Bài Tập & Hướng Dẫn Cách Học – Mighty Math

Hướng dẫn giải

Chọn D

Từ giả thiết suy ra:

SA ⊥ (ABC) ⇒ (SA, (ABC)) = 90°

Ví dụ 3: Cho hình chóp S.ABC có đáy ABC là tam giác vuông cạnh huyền BC = a. Hình chiếu vuông góc của S lên (ABC) trùng với trung điểm BC. Biết SB = a. Tính số đo của góc giữa SA và (ABC).

A. 30° B. 45° C. 60° D. 75°

Xem thêm:: Bảng Cửu Chương 9 || Bài Tập & Hướng Dẫn Cách Học – Mighty Math

Hướng dẫn giải

Chọn C

Gọi H là trung điểm của BC suy ra

Xem thêm:: Ôn tập chương I: Giải bài 1 2 3 4 5 6 7 trang 34 35 sgk Hình học 11

AH = BH = CH = (1/2)BC = a/2

Ví dụ 4: Cho hình chóp S.ABCD , đáy ABCD là hình vuông cạnh bằng a và SA ⊥ (ABCD) . Biết SA = a(√6)/3. Tính góc giữa SC và (ABCD) .

A. 30° B. 45° C. 60° D.90°

Xem thêm:: Bảng Cửu Chương 9 || Bài Tập & Hướng Dẫn Cách Học – Mighty Math

Hướng dẫn giải

Chọn A

Ví dụ 5: Cho hình chóp S. ABC có đáy ABC là tam giác đều cạnh a. Hình chiếu vuông góc của S lên (ABC) trùng với trung điểm H của cạnh BC. Biết tam giác SBC là tam giác đều. Tính số đo của góc giữa SA và (ABC)

A. 60° B.90° C. 45° D. 30°

Xem thêm:: Bảng Cửu Chương 9 || Bài Tập & Hướng Dẫn Cách Học – Mighty Math

Hướng dẫn giải

Do H là hình chiếu của S lên mặt phẳng ( ABC) nên SH ⊥ (ABC)

Vậy AH là hình chiếu của SH lên mp(ABC)

⇒ (SA, (ABC)) = (SA, AH) = ∠ SAH

Ta có: SH ⊥ (ABC) ⇒ SH ⊥ AH

Mà: ΔABC = ΔSBC ⇒ SH = AH

Xem thêm:: Bài toán tính tổng của dãy số có quy luật cách đều – Download.vn

Vậy tam giác SAH vuông cân tại H ⇒ SAH = 45°

Chọn C

Ví dụ 6: Cho hình thoi ABCD có tâm O, AC = 2a ; BD = 2AC . Lấy điểm S không thuộc (ABCD) sao cho SO ⊥ (ABCD) . Biết tan(SBO) = 1/2. Tính số đo của góc giữa SC và ( ABCD)

A. 30° B.45° C. 60° D. 90°

Xem thêm:: Bảng Cửu Chương 9 || Bài Tập & Hướng Dẫn Cách Học – Mighty Math

Hướng dẫn giải

Chọn B

C. Bài tập vận dụng

Câu 1: Cho hình chóp S.ABC có đáy ABC là tam giác vuông cạnh huyền BC = a. Hình chiếu vuông góc của S lên (ABC) trùng với trung điể BC . Biết SB = a. Tính số đo của góc giữa SA và (ABC)

A. 30° B.45° C. 60° D. 75°

Câu 2: Cho hình chóp S.ABCD có đáy là hình vuông cạnh a. Đường thẳng SA vuông góc với mặt phẳng đáy và SA = a. Góc giữa đường thẳng SC và mặt phẳng (SAB) là α, khi đó tanα nhận giá trị nào trong các giá trị sau?

Câu 3: Cho hình chóp S. ABC có SA ⊥ (ABC) và tam giác ABC không vuông. Gọi H, K lần lượt là trực tâm tam giác ABC và tam giác SBC. Số đo góc tạo bởi SC và (BHK) là:

A. 45° B. 120° C. 90° D. 65°

Câu 4: Cho hình chóp S.ABCD có đáy ABCD là hình vuông. Mặt bên SAB là tam giác đều có đường cao AH vuông góc với mp( ABCD). Gọi α là góc giữa BD và mp(SAD) . Chọn khẳng định đúng trong các khẳng định sau?

Câu 5: Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh a, SA ⊥ (ABCD), SA = a√6. Gọi α là góc giữa SC và mp (ABCD). Chọn khẳng định đúng trong các khẳng định sau ?

Câu 6: Cho hình lập phương ABCD.A’B’C’D’ cạnh a. Gọi α là góc giữa AC’ và mp(A’BCD’). Chọn khẳng định đúng trong các khẳng định sau?

Ngân hàng trắc nghiệm lớp 11 tại khoahoc.vietjack.com

  • Hơn 75.000 câu trắc nghiệm Toán 11 có đáp án
  • Hơn 50.000 câu trắc nghiệm Hóa 11 có đáp án chi tiết
  • Gần 40.000 câu trắc nghiệm Vật lý 11 có đáp án
  • Kho trắc nghiệm các môn khác
Đánh giá tốt post
google.com, pub-8111558219602366, DIRECT, f08c47fec0942fa0