Đề thi HSG Toán 9 huyện Thanh Lang năm 2017-2018 lần 1

PHÒNG GD&ĐT BÌNH XUYÊN TRƯỜNG THCS THANH LÃNG

ĐỀ KHẢO SÁT CHẤT LƯỢNG HSG_LẦN 1

NĂM HỌC 2017-2018

ĐỀ CHÍNH THỨC

MÔN: TOÁN 9

Thời gian làm bài: 150 phút không kể thời gian giao đề

Câu 1:

a) Tính giá trị của đa thức tại

b) So sánh và

c) Tính giá trị biểu thức: với 00< x < 900

d) Biết là số vô tỉ, hãy tìm các số nguyên a, b thỏa mãn:

Câu 2: Giải phương trình sau:

Câu 3:

a) Cho đa thức P(x) = ax3 + bx2 + cx + d với a, b, c, d là các hệ số nguyên. Chứng minh rằng nếu P(x) chia hết cho 5 với mọi giá trị nguyên của x thì các hệ số a, b, c, d đều chia hết cho 5.

b) Tìm nghiệm nguyên của phương trình: x2 – xy + y2 – 4 = 0

c) Cho n là số tự nhiên lớn hơn 1. Chứng minh rằng n4 + 4n là hợp số.

Câu 4:

  1. Chứng minh rằng

  2. Cho a, b, c là 3 số dương thỏa mãn điều kiện

Tìm giá trị lớn nhất của tích (a + b)(b + c)(c + a).

Câu 5:

Cho nhọn, có ba đường cao AD, BI, CK cắt nhau tại H. Gọi chân các đường vuông góc hạ từ D xuống AB, AC lần lượt là E và F.

  1. Chứng minh rằng: AE.AB = AF.AC

  2. Giả sử HD = AD. Chứng minh rằng: tanB.tanC = 3

  3. Gọi M, N lần lượt là chân đường vuông góc kẻ từ D đến BI và CK.

Chứng minh rằng: 4 điểm E, M, N, F thẳng hàng.

– Hết –

Thí sinh không được sử dụng tài liệu và máy tính cầm tay khi làm bài.

Xem thêm:  Ý nghĩa của các con số trong tình yêu - Bách hóa XANH

Cán bộ coi thi không giải thích gì thêm.

PHÒNG GD&ĐT BÌNH XUYÊN TRƯỜNG THCS THANH LÃNG

HDC KHẢO SÁT CHẤT LƯỢNG HSG_LẦN 1

NĂM HỌC 2017-2018

MÔN: TOÁN 9 Câu Ý Đáp án Điểm Câu 1

a)

= 0.75 0.25

b)

Ta có 0.5 Vậy> 0.5

c)

0.25 0.25 0.25 0.25 d) ĐK: (*) (*) Ta thấy (*) có dạng trong đó A, B , nếu vô lí vậy B = 0 => A= 0. Do đó (*) (không t/m ĐK (*)). Vậy a = 9; b = 4 Câu 2

a)

0.5đ

ĐK (**) (2) + Trường hợp : x + 3 = 0 (TMĐK (**) 0.25 + Trường hợp : x + 3 0 Ta có (x-3)(x-1) = 6 (TMĐK (*)) Vậy tập nghiệm của phương trình (2) là: S ={-3; ; } 0.25 Câu 3

a)

0.5đ

Ta có: P(0) = d 5 P(1) = a + b + c + d 5 => a + b + c 5 (1) P(-1) = -a + b – c + d 5 => -a + b – c 5 (2) 0.25 Từ (1) và (2) suy ra 2b 5 => b 5 vì (2,5) = 1, suy ra a + c 5 P(2) = 8a + 4b + 2c + d 5 => 8a + 2c 5 => a 5 => c 5 0.25

b)

0.5đ

Ta có 4×2 – 4xy + 4y2 = 16

( 2x – y )2 + 3y2 = 16

( 2x – y )2 = 16 – 3y2

Vì ( 2x – y )2 0 nên 16 – 3y2 0 y2 5 y2 { 0; 1; 4 }

  • Nếu y2 = 0 thì x2 = 4 x =2

  • Nếu y2 = 1 thì ( 2x – y )2 = 13 không là số chính phương nên loại y2 = 1

0.25

  • Nếu y2 = 4 y = 2

+ Khi y = 2 thì x = 0 hoặc x = 2

+ Khi y = – 2 thì x = 0 hoặc x = – 2

Vậy: phương trình có 6 nghiệm nguyên là:

(x, y) = ( – 2; 0 ); ( 2; 0 ); ( 0; 2 ); ( 2; 2 ); ( 0; – 2 ); ( – 2; -2 )

0.25

c)

0.5đ

– Nếu n là số chẵn thì n4 + 4n là số chẵn lớn hơn 2 nên là hợp số

Xem thêm:  Giải vở bài tập Toán lớp 5 trang 37, 38 tập 2: Luyện tập chung

– Nếu n là số lẻ, đặt n = 2k + 1 với k là số tự nhiên lớn hơn 0 ta có

n4 + 42k + 1 = (n2)2 + (2.4k )2

= (n2)2 + 2.n2.2.4k + (2.4k )2 – 2.n2.2.4k

0.25 = ( n2 + 2.4k )2-(2n.2k)2 =(n2 + 2.4k – 2n.2k).(n2 + 2.4k + 2n.2k)

Vì n2 + 2.4k + 2n.2k > n2 + 2.4k – 2n.2k = n2 + 4k – 2n.2k + 4k

= (n – 2k)2 + 4k> 4

Suy ra n4 + 42k + 1 là hợp số

Vậy n4 + 4n là hợp số với mọi số tự nhiên n lớn hơn 1

0.25 Câu 4

a)

0.5đ

Giả sử ta có 0.25 luôn đúng với mọi a, b Vậy với mọi a, b

b)

0.5đ

Đặt a + b = x; b + c = y; c + a = z với x, y, z là các số thực dương

Ta có

(Áp dụng bất đẳng thức Cô si cho 2 số dươngvà)

Chứng minh tươngtự ta cóvà

0.25

Suyra

.

Dấu “ = ” xảy ra khi

Vậy: Giá trị lớn nhất của tích ( a + b )( b + c )( c + a) là

0.25 Câu 5 image70.emf.svg

a)

Áp dụng hệ thức lượng trong tam giác vuông ta có: AE.AB = AD2 ;

AF.AC = AD2

0.5 Suy ra: AE.AB = AF.AC 0.5

b)

Biểu thị được: tanB = ; tanC =; tanB.tanC =

Biểu thị được:

tanB = ; tanC = ; tanB.tanC =

0.5 Suyra: (tanB.tanC)2 = => tanB.tanC = = 3 0.5

c)

Chứng minh được: AE.AB/AK.AB = AF.AC/AI.AC => EF // IK 0.5 Chứng minh được: Tương tự chứng minh đượcvà suy ra 4 điểm E, M, N, F thẳng hàng 0.5 Tổng 10

Lưu ý: Học sinh làm cách khác dúng vẫn cho điểm tối đa.

BỘ ĐỀ ĐÁP ÁN HSG MÔN TOÁN CẤP HUYỆN, TỈNH FILE WORD Zalo 0946095198

160 ĐỀ ĐÁP ÁN HSG TOÁN 6=110k; 70 ĐỀ ĐÁP ÁN HSG 6 CÁC HUYỆN CỦA VĨNH PHÚC=100k

Xem thêm:  Cách tính lương hưu bảo hiểm mới nhất năm 2022

250 ĐỀ ĐÁP ÁN HSG TOÁN 7=180k; 70 ĐỀ ĐÁP ÁN HSG 7 CÁC HUYỆN CỦA VĨNH PHÚC=100k

210 ĐỀ ĐÁP ÁN HSG TOÁN 8=150k; 60 ĐỀ ĐÁP ÁN HSG 8 CÁC HUYỆN CỦA VĨNH PHÚC=100k

30 ĐỀ ĐÁP ÁN HSG TOÁN 8 HÀ NỘI=50k

265 ĐỀ ĐÁP ÁN HSG TOÁN 9 HUYỆN=200k; 230 ĐỀ ĐÁP ÁN HSG TOÁN 9 CẤP TỈNH=180k

50 ĐỀ ĐÁP ÁN HSG TOÁN 9 HÀ NỘI=80k; 55 ĐỀ ĐÁP ÁN HSG TOÁN 9 (2020-2021)=80k;

90 ĐỀ ĐÁP ÁN HSG TOÁN 9 CÁC HUYỆN CỦA TỈNH VĨNH PHÚC=100k

Đánh giá tốt post
33bet0.com
tk88asia.com
78win
nhacaiuytin